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1 Implementation of KalignP

KalignP inherits the syntax of Kalign2 and extends its functionality so that externally sup-
plied position specific gap penalty (ESPSGP) can be input into the alignment program
to change the behavior of the alignment. The ESPSGP can be supplied in the Enhanced
FASTA format as described in Section 5. If ESPSGP is supplied, it will replace the default
gap penalty at each residue position of the sequences to be aligned. KalignP uses the same
progressive method as Kalign2. For sequence to sequence alignment, gap penalty at each
residue position of the sequences will be set as the ESPSGP. That is, for a given sequence,
the gap penalty at position i is defined as

GP (i) = ESPSGP (i) (1)

After aligning two sequences A and B, a profile C will be generated. The preliminary
gap penalty of profile C is calculated from the pairwise alignment of sequence A and B by

GPC(m) =


GPA(i) +GPB(j) if aligned

GPA(i) if gap at B

GPB(j) if gap at A

(2)

where GPC(m) is the gap penalty for profile C at position m, GPA(i) is the gap penalty for
sequence A at position i and GPB(j) is the gap penalty for sequence B at position j.

When aligning a profile to a sequence, or a profile to a profile, the gap penalty of the profile
and the sequence will be weighted in the same way as the original Kalign2 (Lassmann et al.,
2009) with the consideration that positions with no or few gaps should be punished harder
to open a gap.

If the input file is a normal FASTA file or the ESPSGP are all set to 1, the alignment will
be the same as that of Kalign2. With the implementation of ESPSGP, KalignP itself takes
about 50% more CPU time than the original Kalign2 to do a common alignment. The whole
KalignP package, including automatic secondary structure prediction and ESPSGP calcula-
tion, is about 15 times slower than Kalign2. Nevertheless, this speed is still comparable to
many other MSA programs such as ClustalW (Thompson et al., 1994) and Muscle (Edgar,
2004) and with better performance.

KalignP inherits one of the best merits from Kalign2: low memory consumption. Since
KalignP uses the same progressive method as Kalign2, it consumes almost the same amount
of memory as Kalign2. KalignP does need a little more memory to store position specific gap
penalties for each sequence but this is very small (at the level of 1/N, where N is the average
sequence length) compared to the memory used in the progressive alignment. Further, we
calculated the heap memory usage by “valgrind” and the the result are so that KalignP uses
about 2.6% more memory than Kalign2 on average when tested on Balibase 3.0.
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2 Estimation of ESPSGP from predicted secondary

structure

The principle to estimate ESPSGP from the predicted secondary structure is simple: increase
the gap penalty at helices and sheets while lowering the gap penalty at coils. ESPSGP for
position i is defined by

ESPSGP (i) = GPdefault ∗
(
1.0 +m(i)

)
(3)

For helices and sheets, m(i) is defined as

m(i) = weightHE ∗ weightpos ∗
(
p(i)− shiftHE

)
(4)

where weightHE is the weight for helices and sheets, p(i) is the reliability of the prediction
that ranges from 0 to 1, and shiftHE is a parameter to adjust the prediction reliability for
helices and sheets. weightpos is a parameter to adjust the effect of the residue position in
helices and sheets, taking into account that the predictions at the center of helices and sheets
are usually more accurate than the two ends (Zhou et al., 2010). weightpos for position j in
the helices or sheets is defined as:

weightpos(j) =

{
0.05 if j = 0 or N − 1

1.0− (j + 1−mid)/mid for other j
(5)

where j is the position of the residue at helices/sheets, N is the length of the segment, and
mid = N/2.

For loops, weightpos is not applied and thus m(i) is defined as

m(i) = weightC ∗
(
p(i)− shiftC

)
(6)

where weightC is the weight for coils and shiftC is a parameter to adjust the prediction
reliability for coils.

Note that in the Enhanced FASTA file only the scale
(
1.0 + m(i)

)
is supplied. This

scale will be multiplied by the default gap penalty GPdefault when input into the KalignP
program, see Section 5 for details.

We used PSIPRED single (version 3.2) (Jones, 1999) to predicted the secondary structure
due to its high speed and relatively high accuracy.

3 Optimizing parameters for KalignP for the bench-

mark on Balibase 3.0

KalignP makes improvement over Kalign2 by using ESPSGP estimated from secondary struc-
ture predicted by PSIPRED single (version 3.2) (Jones, 1999). To estimate ESPSGP from
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the predicted secondary structure with the method described in Section 2, we need to op-
timize four parameters, weightHE, weightC , shiftHE and shiftC . Often, over-optimistic
results can be obtained by over training a method on a particular benchmark dataset. To
avoid this problem caused by direct parameter optimization, we split the benchmark dataset
randomly into three subsets and performed a standard three-fold cross-validation. KalignP
was run on each subset with parameters optimized from the other two subsets by grid search-
ing. The final parameters were taken as the average of the three. The results of each fold of
the cross-validation can be found at Supplementary Table 4.

4 Benchmark data

Due to the size limitation, all benchmark data are not supplied in this document but are
available for download at http://kalignp.cbr.su.se/download/benchmark

5 Enhanced FASTA

The enhanced FASTA format is the same as FASTA format except that gap penalty arrays
can be appended below the sequence. Gap penalties are enclosed in curly brackets {}. The
gap open array, gap extension array and the terminal gap extension array are recognized by
the tags “gpo:”, “gpe:” and “tgpe:” respectively. If there is a leading char ‘#’ within the
brackets {}, this gap penalty array is commented out. Gap penalties can be supplied in the
following two formats, but can not be mixed in the same input file.

1. An array of real values enclosed in {} and delimited by white spaces. e.g. {gpo: 1 1
1.5 1.5 1.5 0.5 0.5}. In this case, the number of real values should be exactly the same
as the number of residues in the sequence.

2. Index:value, e.g. 1-15:2.0 means the residues 1 to 15 are assigned with value 2.0. For
unassigned residues, the default value is 1.

The value of each element is not the absolute gap penalty but the scale of the default gap
penalty for KalignP, e.g. {gpo: 1:2.0} means that the gap open penalty of the first residue
will be set to 2.0*10, if the default gap open penalty is 10. We use the scale instead of the
absolute gap penalty since it is easier to understand how position specific gap penalty varies.
Moreover, it avoids possible conflicts when the general gap penalty is reset by the “-gpo”,
“-gpe” or “-tgpe” option of KalignP.

An example is shown below in both formats. The sequence is ASNLSKLFLSDSDA. All
three types of gap penalty arrays are supplied, but gap extension array and terminal gap
penalty array are commented out by the leading char ‘#’ and thus only the gap open array
is effective.
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5.1 Example in format 1:

Note that the size of the array should be exactly the same as the length of the sequence.
>seq1

ASNLSKLFLSDSDA

{gpo: 1.5 1.5 1.5 1.5 1.5 0.5 0.5 0.5 0.5 0.5 1 1 1 1}
{#gpe: 2 2 2 2 2 0.4 0.4 0.4 0.4 0.4 1 1 1 1}
{#tgpe: 2 2 2 2 2 2 2 2 2 2 1 1 1 1 }

5.2 Example in format 2:

>seq1

ASNLSKLFLSDSDA

{gpo: 1-5:1.5 6-10:0.5}
{#gpe: 1-5:2.0 6-10:0.4}
{#tgpe: 1-10:2.0}

6 How KalignP works

KalignP changes the behavior of the alignment intuitively with the externally supplied po-
sition specific gap penalties. Generally speaking, if the users want to force a gap after the
first residue of a sequence, set the gap open penalty at the second residue position of that
sequence to a small value. For example, for the following four sequences,

>seq1

ASNLSKLFLSDSDA

>seq2

ASNLDA

>seq3

ASNLKFFFDDDAA

>seq4

LLNFFSDAAAAA

The multiple sequence alignment (MSA) with all parameters set to default is as follows
(in ClustalW format)

seq1 ASNLSKLFLSDSDA--
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seq2 ASNLDA----------

seq3 ASNLKF-FFDDDAA--

seq4 LLN----FFSDAAAAA

The tree of the MSA is (((seq1, seq2), seq3), seq4). If the users want to open a gap after
the second residue in seq1, the users can set the gap open penalty at the third position to be
a minus value (e.g. -5). An example setting of ESPSGP is as follows. To ensure that only
one gap is opened after the second residue ‘S’ in seq1 so that we can see clearly the effect
of gap open, we have set the gap open penalties for seq2 and the gap open penalty at the
fourth position of seq1 to be a large positive value.

>seq1

ASNLSKLFLSDSDA

{gpo: 1 1 -5 10 1 1 1 1 1 1 1 1 1 1 }
>seq2

ASNLDA

{gpo: 10 10 10 10 10 10 }
>seq3

ASNLKFFFDDDAA

>seq4

LLNFFSDAAAAA

The alignment will become

seq1 AS-NLSKLFLSDSDA--

seq2 -ASNLDA----------

seq3 -ASNLKF-FFDDDAA--

seq4 ---LLN--FFSDAAAAA

If the users want again to open a gap after the 11th residue ‘D’ in seq3, set the gap open
penalty of the 11th position in seq3 to a minus value (e.g. -5). An example ESPSGP setting
is as follows. Again, to ensure that gap will only be opened after the 11th residue in seq3,
we have set the gap open penalty of seq4 and the neighboring residue positions in seq3 to
large positive values.

>seq1

ASNLSKLFLSDSDA

{gpo: 1 1 -5 10 1 1 1 1 1 1 1 1 1 1 }
>seq2

ASNLDA

{gpo: 10 10 10 10 10 10 }

6



>seq3

ASNLKFFFDDDAA

{gpo: 1 1 1 1 1 1 1 1 1 10 -5 20 10 }
>seq4

LLNFFSDAAAAA

{gpo: 10 10 10 10 10 10 10 10 10 10 10 10}

The alignment will become
seq1 ---------AS-NLSKLFLSDSDA

seq2 ----------ASNLDA--------

seq3 ASNLKFFFDD----DAA-------

seq4 ------------LLNFFSDAAAAA

The alignment above might not be ideal since there are many gaps at the terminals. To
reduce the number of terminal gaps, one can increase the terminal gap extension penalty as
shown in the example below.

>seq1

ASNLSKLFLSDSDA

{gpo: 1 1 -5 10 1 1 1 1 1 1 1 1 1 1 }
{tgpe: 10 10 10 10 10 10 10 10 10 10 10 10 10 10}
>seq2

ASNLDA

{gpo: 10 10 10 10 10 10 }
{tgpe:10 10 10 10 10 10}
>seq3

ASNLKFFFDDDAA

{gpo: 1 1 1 1 1 1 1 1 1 10 -5 20 10}
{tgpe: 10 10 10 10 10 10 10 10 10 10 10 10 10}
>seq4

LLNFFSDAAAAA

{gpo: 10 10 10 10 10 10 10 10 10 10 10 10}
{tgpe:10 10 10 10 10 10 10 10 10 10 10 10}

The alignment will become

seq1 AS-NLSKLFLSDS-DA

seq2 -ASNLDA---------

seq3 AS-NLKFFFDD-D-AA

seq4 ---LLNFFSDAAAAA-
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Sometimes, the gap will not be opened at the expected position if many customized gap
penalties are set in multiple sequences. This is because KalignP forbid neighboring gap
opens at two aligned sequences such as the following example

ALDDS-D-S

ALED-D-S-
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7 Supplementary tables

Supplementary Table 1: TC (column) score of KalignP and other multiple sequence
alignment methods on Balibase 3.0 (Thompson et al., 2005). The TC score was calculated
by the bali score version 3.0 and the core blocks defined in the xml file were used. Note that
the values shown in table have been multiplied by 100 for easy reading.

Method CPUa (s) RV111 RV122 RV203 RV304 RV405 RV506 All

Kalign2 57 40.6 79.2 40.8 49.3 50.4 42.1 52.2
KalignP 95 (974b) 42.2 80.0 40.8 51.2 52.3 44.5 53.4
Mafft 223 29.2 75.6 38.0 47.8 48.0 48.5 48.5
ClustalW 1281 32.2 75.1 33.5 37.8 39.6 36.1 44.4
Muscle 1281 42.9 81.5 41.8 47.3 45.0 47.1 52.8
T coffee 25293 51.4 85.9 48.7 56.4 54.2 60.2 60.5
Probcons 26085 52.4 86.3 50.3 59.7 53.2 59.0 61.4

1Reference 1: equi-distant sequences with <20% identity. 2Reference 1: equi-distant sequences with

20-40% identity. 3Reference 2: families aligned with highly divergent “orphan” sequences. 4Reference

3: subgroups with <25% residue identity between groups. 5Reference 4: sequences with N/C-terminal

extensions. 6Reference 5: sequences with internal insertions. aThe CPU time refers to single threaded

process running on a Linux box with Intel quad-core 2.50GHz CPU and 4GB memory. bKalignP running

time including secondary structure prediction and ESPSGP calculation

Supplementary Table 2: The versions and commands of the programs used in the bench-
mark on Balibase 3.0 and pfamA mem (see Supplementary Table 3).

Method Version Command

Kalign2 v 2.04 kalign2
KalignP v 1.0 kalignP
Mafft v 6.847b mafft
ClustalW 2.0.10 clustalw
Muscle v 3.8.31 muscle
T coffee v 8.97 101117 t coffee
Probcons v 1.12 probcons
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Supplementary Table 3: List of PfamA seed alignments in the dataset PfamA-mem. It
was derived from Pfam-A Finn et al. (2009) (version 24.0) seed alignments and filtered by
matching the key word “transmembrane” in the DE (definition) record.

No. AC number No. of seq Definition

1 PF00001.14 64 7 transmembrane receptor (rhodopsin family)
2 PF00002.17 32 7 transmembrane receptor (Secretin family)
3 PF00003.15 110 7 transmembrane sweet-taste receptor of 3 GCPR
4 PF01490.11 26 Transmembrane amino acid transporter protein
5 PF00664.16 70 ABC transporter transmembrane region
6 PF06472.8 26 ABC transporter transmembrane region 2
7 PF09608.3 49 Putative transmembrane protein (Alph Pro TM)
8 PF05232.5 181 Bacterial Transmembrane Pair family
9 PF01891.9 12 Cobalt uptake substrate-specific transmembrane region
10 PF04505.5 69 Interferon-induced transmembrane protein
11 PF04549.7 13 CD47 transmembrane region
12 PF05602.5 28 Cleft lip and palate transmembrane protein 1 (CLPTM1)
13 PF09125.3 2 Cytochrome C oxidase subunit II, transmembrane
14 PF02790.8 32 Cytochrome C oxidase subunit II, transmembrane domain
15 PF02683.8 10 Cytochrome C biogenesis protein transmembrane region
16 PF12077.1 14 Transmembrane protein of unknown function (DUF3556)
17 PF12089.1 24 Transmembrane domain of unknown function (DUF3566)
18 PF04148.6 19 Transmembrane adaptor Erv26
19 PF09721.3 102 Transmembrane exosortase (Exosortase EpsH)
20 PF01794.12 215 Ferric reductase like transmembrane component
21 PF09163.4 40 Formate dehydrogenase N, transmembrane
22 PF03409.8 19 Transmembrane glycoprotein
23 PF12369.1 14 Gonadotropin hormone receptor transmembrane region
24 PF10192.2 23 Rhodopsin-like GPCR transmembrane domain
25 PF06814.6 15 Lung seven transmembrane receptor
26 PF09726.2 5 Transmembrane protein
27 PF09773.2 7 Meckelin (Transmembrane protein 67)
28 PF03821.9 3 Golgi 4-transmembrane spanning transporter
29 PF00939.12 11 Sodium:sulfate symporter transmembrane region
30 PF10716.2 24 NADH dehydrogenase transmembrane subunit
31 PF02932.9 50 Neurotransmitter-gated ion-channel transmembrane region
32 PF10670.2 108 Nickel uptake substrate-specific transmembrane region
33 PF01389.10 13 OmpA-like transmembrane domain
34 PF09777.2 10 Osteopetrosis-associated transmembrane protein 1 precursor
35 PF09656.3 29 Putative transmembrane protein (PGPGW)
36 PF01127.15 126 Succinate dehydrogenase/Fumarate reductase transmembrane subunit
37 PF08693.3 13 Transmembrane alpha-helix domain
38 PF09049.3 3 Stannin transmembrane
39 PF09772.2 10 Transmembrane protein 26
40 PF03647.6 66 Transmembrane proteins 14C
41 PF10268.2 8 Predicted transmembrane protein 161AB
42 PF10190.2 8 Putative transmembrane protein 170
43 PF10269.2 15 Transmembrane Fragile-X-F protein
44 PF09771.2 5 Transmembrane protein 188
45 PF09788.2 8 Transmembrane protein 55A
46 PF10267.2 15 Predicted transmembrane and coiled-coil 2 protein
47 PF11044.1 4 Plectrovirus spv1-c74 ORF 12 transmembrane protein
48 PF10271.2 11 Putative transmembrane protein
49 PF10272.2 10 Putative transmembrane protein precursor
50 PF09534.3 24 Tryptophan-associated transmembrane protein (Trp oprn chp)
51 PF02921.7 32 Ubiquinol cytochrome reductase transmembrane region
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Supplementary Table 4: Results of KalignP at each fold of cross-validation on Balibase
3.0. SP and TC scores were calculated by the program bali score version 3.0 and the core
blocks defined in the xml file were used. The three subsets of the cross-validation were
created by randomly splitting the alignments in each reference set into three equal parts.
The parameters were optimized in the training set by maximizing the average of the sum
of SP and TC scores at each fold. Since the optimized parameters P1 to P4 are the same
within each fold, they are only shown in the line for record “All”. Note that the values of
SP and TC scores shown in table have been multiplied by 100 for easy reading.

No. of alignments Bali-scores Parameters

Train Test
Train Test

P1a P2b P3c P4d
SP TC SP TC

Fold 1

RV11 51 25 63.9 36.9 69.9 52.7
RV12 59 29 92.2 81.0 90.6 77.1
RV20 55 27 91.7 39.3 93.5 43.1
RV30 40 20 84.9 52.6 79.2 45.9
RV40 33 16 89.2 54.3 90.4 48.1
RV50 21 10 84.4 46.8 81.9 38.9
All 259 127 84.4 52.9 84.7 53.5 0.50 0.52 0.50 0.50

Fold 2

RV11 51 25 65.8 43.8 64.6 37.6
RV12 59 29 92.1 80.6 91.3 79.0
RV20 55 27 92.2 42.4 92.9 36.7
RV30 40 20 83.9 54.1 83.2 47.9
RV40 33 16 90.3 52.5 89.1 51.0
RV50 21 10 85.1 46.5 82.4 41.1
All 259 127 84.9 54.8 84.1 50.5 0.50 0.51 0.60 0.45

Fold 3

RV11 50 26 67.2 45.1 61.8 35.3
RV12 58 30 91.2 78.7 93.1 82.9
RV20 54 28 93.2 40.4 90.7 39.2
RV30 40 20 82.6 50.5 86.2 55.9
RV40 32 17 90.2 49.5 89.5 57.5
RV50 20 11 82.9 40.7 86.8 52.0
All 254 132 84.8 52.8 84.4 54.3 0.50 0.52 0.60 0.50

Average parameters 0.50 0.52 0.57 0.48

ashiftC
bshiftHE

cweightC
dweightHE
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